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ABSTRACT: There is an urgent need for electrochemical sensor materials that
exhibit electrochemically compliant properties while also retaining high
durability under physiological conditions. Herein, we demonstrate a novel
strip-style electrochemical sensor using reduced graphene oxide (rGO) and
poly(ethylene dioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS)
nanocomposite films. The fabricated rGO−PEDOT/PSS sensor with and
without nafion has shown an effective electrochemical response for both
selectivity and sensitivity of the serotonin (5-hydroxytryptamine, 5-HT)
neurotransmitter. The developed high-performance hybrid graphene/conducting
polymer strip sensors are likely to find applications as chip electrochemical
sensor devices for patients diagnosed with Alzheimer’s disease.

■ INTRODUCTION

Alzheimer’s disease (AD) is a long-term mental illness affecting
the brain system and thus the memory and awareness of senior
people. It can be clinically diagnosed by an extreme loss of
serotonergic neurons when a severe drop in the level of the 5-
HT neurotransmitter happens.1 Serotonin (5-HT, 5-hydroxy-
tryptamine) is a double-functioning biomolecule present inside
and outside the brain tissues acting as a neurotransmitter and a
hormone, respectively.2,3 Once the 5-HT level is depleted (or
raised), irregular biological and physiological disorders can
occur among individuals. In addition, AD could lead to
addiction to alcohol, infantile autism, sleep disturbances,
depression, liver abnormality, and difficulty to adapt when 5-
HT is dysfunctional.4,5 Therefore, early and direct detection of
5-HT is a pivotal subject for medical diagnostic clinics and
biological researchers nowadays.6,7

Traditional determination methods, for example, high-
performance liquid chromatography (HPLC) and spectropho-
tometry, have been used for biosensing of 5-HT; however, they
are not cost-effective and require prolonged procedures for
sample preparation. Interestingly, due to the electroactive
nature of 5-HT, electrochemical techniques (low cost,
affordable for lab application, and highly selective and sensitive
for biomolecules) have been introduced as suitable determi-
nation methods for fast detection of this neurotransmitter.
Numerous materials are used to obtain satisfactory perform-

ance of electrochemical electrodes; however, 5-HT detection is
still a challenge using unmodified sensors. 5-HT coexists with
numerous species in biological samples; dopamine (DA) is one
of them. 5-HT and DA are electroactive and have been found
to have very close oxidation potentials when tested by bare
electrodes, in turn resulting in signal overlapping of both

chemicals.8 Therefore, most of the reported sensors lack good
selectivity and high sensitivity when simultaneously detecting
these species. Another issue is that most of the traditional
electrochemical sensors are fabricated in large sizes, which are
not ideal for implantation purposes because they cause large
tissue damage.8,9 Furthermore, detection of 5-HT has not been
widely reported so far.8,10 However, it is suggested that, for
optimum detection of 5-HT, many aspects of the prepared
sensor should be considered such as material chemistry,
electrode design, electrochemical properties, ability to be
activated, and surface properties.
The promising electrochemical performance of graphene

(G) has created a new platform that is used for a number of
applications including biosensing technology.11,12 Graphene
has been suggested as an excellent candidate for sensor devices
because it has fascinating electrical, thermal, and electro-
chemical properties. Biocompatibility, great conductivity, high
electron mobility, ability to be modified, and high surface-to-
volume ratio all highlight the versatility of graphene and its
composite-based electrodes.13,14 Hence, graphene is currently
applied in multiple electrochemical experiments and has led to
significant achievements.13,15 Therefore, scientific researchers
have focused on applying this unique material for biodetection
of 5-HT in pristine and/or composite structures as well as as a
modifier for conventional electrodes.2,16 However, the actual
capability of reduced graphene oxide (rGO) for use as an
electrochemical sensor can reduce as a result of accumulation
that develops among the graphene tiers. This phenomenon is
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attributed to electrostatic and π−π interactions between
carbon molecules within the layers. Therefore, scientists have
directed their attention to overcome the accumulation
drawback and use rGO effectively and efficiently.
Coating graphene electrodes with conductive polymers

(CPs) has been introduced as a perfect solution for eliminating
accumulation and increasing the electrocatalytic properties of
the electrode at the same time. In a typical chemical reaction at
the electrode’s surface, conductive polymers work as a
connector to facilitate the movement of electrons from various
oxidized analytes to the electrode. Many studies are being
carried out on conductive polymers in the field of electro-
chemistry, particularly, neurotransmitter sensing.
Therefore, such polymers having superelectronic and

electrocatalytic properties have been in demand in the
construction of electrochemical sensors, for example, gra-
phene-based electrodes modified with poly(ethylene dioxy-

thiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) be-
cause of fascinating conductivity, the flexibility of electron
transfer with reasonable oxidation potentials, and water
solubility to obtain the interactive effect of all components
when performing toward aimed analytes.17,18 Also, PEDOT/
PSS is a very promising conductive polymer to decrease the
restacking problem of graphene layers. The polymeric
backbone of PEDOT can also be easily functionalized to
increase its conductivity, biocompatibility, and stability
through the incorporation of various dopants, counter ions,
and biological moieties. The most frequently used PEDOT
derivative is PEDOT doped with poly(styrene-sulfonate)
(PSS), PEDOT:PSS, with an electrical conductivity that can
go as high as 4600 S cm−1.19,20

Nafion as a perfluorinated ion-exchange and negatively
charged polymer is also extensively used due to its good
biocompatibility and excellent selectivity to cations rather than

Figure 1. SEM images of rGO−PEDOT/PSS strip sensors: (a) without and (b) with nafion @ 10 μm scale along with the inset showing the
magnified SEM images of each composite @ 1 μm scale and SEM cross section of rGO−PEDOT/PSS @ 5 μm scale, respectively. (c) Raman
spectra of nafion, rGO, PEDOT/PSS, rGO−PEDOT/PSS, and rGO−PEDOT/PSS−nafion. (d) Fourier transform infrared (FTIR) spectrum of
nafion, rGO, PEDOT/PSS, rGO−PEDOT/PSS, and rGO−PEDOT/PSS−nafion. (e) Differential pulse voltammetry (DPV) of separate detection
of 5-HT (10 μM) using unmodified and nafion-modified rGO−PEDOT/PSS strips. (f) DPV of separate detection of DA (10 μM) using
unmodified and nafion-modified rGO−PEDOT/PSS strips.
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anions.21 Modification of electrochemical electrodes with
nafion has shown improved selective adsorption. This
approach is quite useful to increase absorption of 5-HT
cations and for recording better measurements.
In this paper, we demonstrate the fabrication of an rGO−

PEDOT/PSS sensor in strip style for qualified voltammetric
determination of the 5-HT neurotransmitter. The applied
electrochemical techniques displayed sensitivity and selectivity
toward 5-HT compared to co-existed DA molecules. In
addition, the sensor’s performance has been enhanced by
adding nafion in rGO−PEDOT/PSS dispersion and the effect
of nafion on selective detection of 5-HT when simultaneously
tested with DA (the interference) has been investigated. The
physical and chemical characterization of the developed
electrochemical sensors has been carried out.

■ RESULTS AND DISCUSSION
Physical Characterization of rGO−PEDOT/PSS Strip.

Scanning electron microscopy (SEM) images of the as-
prepared rGO−PEDOT/PSS film are shown in Figure 1a. As
can be seen from Figure 1a, as-prepared films show a smooth
and flat surface, which suggests the tight interaction between
PEDOT/PSS and graphene sheets in addition to the role of
PEDOT/PSS in decreasing the restacking problem within
graphene layers. The obtained SEM image at higher resolution
in Figure 1a (inset) showed minor curves on the rGO−
PEDOT/PSS film due to minimal restacking of rGO. The
results show that obvious changes occurred in rGO−PEDOT/
PSS films once mixed with the nafion polymer. The SEM
image in Figure 1b revealed the wrinkled surface of the rGO−
PEDOT/PSS−nafion composite film, which could be
attributed to the solvent evaporation process. The rGO−
PEDOT/PSS−nafion film showed random dark spots
distributed on its surface in Figure 1b (inset: magnified
image). These dark spots were not seen on the rGO−

PEDOT/PSS film with no nafion (Figure 1a magnified image).
It could be due to distortion in the polymer structure when
mixed with graphene that causes polymer rearrangement.
Figure 1c represents the Raman spectra of nafion, PEDOT/

PSS, rGO, rGO−PEDOT/PSS, and rGO−PEDOT/PSS−
nafion samples. D and G bands are two predominant bands
highlighted in Raman spectra.22,23 The D band is related to any
disorders in the structure of the film’s components caused by
defects, functional groups, and surface faults. The G band is
generated from heterogeneous structures and carbon bond
vibrations within the graphitic layer.24,25 As shown in Figure
1c, sharp and clear D and G peaks appear at 1340 and 1580
cm−1, respectively, in Raman spectra of rGO, rGO−PEDOT/
PSS, and rGO−PEDOT/PSS−nafion samples. PEDOT/PSS
showed relatively weak peaks at 1530, 1430, 1260, 1000, and
580 cm−1, which could not be seen in rGO−PEDOT/PSS or
rGO−PEDOT/PSS−nafion due to low intensity.26 The
increased ID/IG ratio recorded for composite films from
1.15 (the rGO−PEDOT/PSS) to 1.27 (rGO−PEDOT/PSS−
nafion) suggests the role of nafion in generating a high
proportion of defects and fractions on the rGO−PEDOT/PSS
film surface.27,28 The rGO sample displayed an even higher
ID/IG ratio of 1.43 than rGO−PEDOT/PSS and rGO−
PEDOT/PSS−nafion and revealed highly defective surface
resulting from the reduction process of GO to rGO.
FTIR spectroscopy is a complementary technique to Raman

analyses for sample surfaces to monitor any changes when
modified (Figure 2d). PEDOT/PSS vibrations at 1580 and
1508 cm−1 belong to the thiophene ring.29,30 S−O and S−
phenyl groups were also detected at 1166, 1125, and 1028
cm−1.29,30 However, PEDOT/PSS peaks decreased after
mixing with rGO to prepare an rGO−PEDOT/PSS composite
film.29,31 Notably, the peaks increased significantly after the
addition of nafion to prepare an rGO−PEDOT/PSS−nafion

Figure 2. DPV results of the as-prepared strip films (rGO−PEDOT/PSS−nafion (0.5 wt %)) with different compositions (thicknesses): (a) 100
μL of the composite, (b) 200 μL of the composite, (c) 300 μL of the composite, and (d) 400 μL of the composite. The area of a single film was 2
cm2. The testing system includes a constant level of DA (5 μM) with (0.1−10 μM) 5-HT.
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composite. Nafion role in creating oxygen functional groups on
electrodes surface showing more curvature structure.
The sensing ability of rGO electrodes toward 5-HT

concentrations was also investigated using DPV as highly
sensitive and precise electrochemical technology. Figure 1e
shows DPV curves of rGO−PEDOT/PSS with and without
nafion strip films in a phosphate-buffer saline (PBS) solution
containing 10 μM 5-HT. Using the rGO−PEDOT/PSS strip
(red line), inadequate current signal response was recorded, at
less than 0.5 μA. However, the rGO−PEDOT/PSS−nafion (5
wt %) strip (orange line) gave a well-distinguished oxidation
signal of 5-HT at around 20 μA current signal. In a comparison
between concentric nafion (5%) and diluted nafion (0.5%)
mixed with rGO−PEDOT/PSS, a vast improvement in the 5-
HT current signal was noticed in the diluted nafion−rGO−
PEDO/PSS strip (purple line, Figure 1e). For 10 μM 5-HT,
the diluted nafion electrode recorded an outstanding oxidation

signal current response at around 40 μA, which is double of
that shown at the concentric nafion-modified electrode.
Similarly, Figure 1f shows DPV curves of rGO−PEDOT/

PSS with and without nafion strips in a PBS solution
containing 10 μM DA. The current response of the DA
oxidation signal increased and became more prominent after
rGO−PEDOT/PSS modification with concentric nafion
(orange curve). Furthermore, the diluted nafion (0.5%)-
modified rGO−PEDOT/PSS electrode showed significant
current response of DA (50 μA), which is two times higher
than that recorded by the concentric nafion-modified electrode
(which was around 25 μA only). The presence of diluted
nafion enhances the current intensity dramatically about 100
times and 2 times compared to untreated rGO−PEDOT/PSS
or concentric nafion-modified rGO−PEDOT/PSS strips,
respectively. This can be explained by the remarkable selective
adsorption of nafion, especially when it has lower thickness,

Figure 3. Differential pulse voltammetry (DPV) of the as-prepared rGO−PEDOT/PSS−nafion (0.5%) strip sensors: (a) DPV of separate
detection of a range of 5-HT concentrations from 1 to 10 μM, (b) DPV of separate detection of a range of DA concentrations (1−10 μM), (c)
cyclic voltammetry (CV) at 20 mV/s scan rates, (d) overlaid CVs of the strip sensor in the presence of 5-HT and DA (10 μM each) at different
scan rates ranging from 20 to 40, 60, 80, 100, 120, 140, 160, 180, and 200 mV/s, (e) DPV of simultaneous detection of 5-HT and DA when DA
was constant (5 μM) and 5-HT was changed (0.1−10 μM), (f) DPV of simultaneous detection of 5-HT and DA when 5-HT was constant (5 μM)
and DA was changed (0.1−10 μM).
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which probably controls the transferring process of ions in the
solution to the surface of the electrode.32

Hence, the rGO−PEDOT/PSS−nafion (0.5%) film has
been selected to investigate the targeted biomolecule 5-HT
based on the already proven electrochemical performance in
Figure 1e,f. However, the drop-casted amount of film
dispersion needs to be further investigated as well due to the
direct effect on the strip performance subsequently. Therefore,
DPV experiments were carried out using rGO−PEDOT/PSS
and diluted nafion for prepared films at different thicknesses. In
particular, 0.1, 0.2, 0.3, and 0.4 mL of the (diluted nafion−
rGO−PEDOT/PSS) composite were separately drop-casted
on the same dimensional gold mylar substrates (area = 2 cm2).
The recorded thickness of each film was varied and
corresponded to the amount of deposited composite (as in
Figure 2). The testing system included a PBS solution
containing 5 μM DA with consecutive additions of 5-HT
(0.1−10 μM).
As-prepared films with 100 μL of the composite and low

concentrations of 5-HT were less defined at 0.36 V (showing a
minor oxidation signal as shown in Figure 2a). Moreover,
higher concentrations of 5-HT revealed a clear oxidation signal
with excellent sensitivity. Besides, current response of a DA
oxidation signal descended and did not appear after a few
additions of 5-HT.
On the other hand, for the as-prepared film with 200 μL of

the composite, highly separated signals belonging to 5-HT, at
0.4 V, and DA, at 0.16 V, were noticed with high sensitivity
(Figure 2b). Although DA was found at a high level, these
results confirmed the enhanced sensitivity of 5-HT, about 2.5
times that of the first film. Furthermore, the oxidation signal of
5-HT slightly shifted to a positive potential, which indicated
increased electrocatalytic activity of this film. A dramatic
decrease in DA response was observed in the same DPV shown
in Figure 1b.
Moreover, the as-prepared film with 300 μL of the

composite demonstrated extremely low current response of
5-HT and DA oxidation signals in Figure 2c. The reason is that
the extra amount of diluted nafion in the composite possibly
obstructed some active sites on the strip surface, which
indicates low permeability and weakened catalytic activity.
Likewise, DPV findings in Figure 2d for the as-prepared film
with 400 μL of the composite were complementary to DPV
outcomes in Figure 2c. Figure 2c,d explains the claimed
concept of the thickness effect on the voltammetric perform-
ance of the electrodes.
It can be concluded that the thickness of deposited rGO−

PEDOT/PSS with a diluted nafion composite film plays an
important role in obtaining improved selective adsorption of
serotonin. Therefore, according to the obtained results for
developed strip films in Figure 2, the strip film with 200 μL of
the composite can be considered as the best-performing film
among others due to improved sensitivity and selectivity
toward 5-HT in the presence of DA interference. The
separated oxidation signals of 5-HT and DA facilitated the
study of the oxidation process of 5-HT and demonstrated the
optimum amount of nafion−rGO−PEDOT/PSS composite
used for electrode fabrication in Figure 2b. The capability of
the diluted nafion−rGO−PEDOT/PSS strip in detecting 5-
HT and DA simultaneously has been investigated. PBS
solution containing 5 μM DA with a range of 5-HT
concentrations (0.1−10 μM) was used for DPV. Figure 2a
exhibits the oxidation signal of 5-HT, which was very stable at

0.4 V with no shifts. Moreover, a well-defined and gradually
increasing current response was observed for the sequential
additions of 5-HT. It is worth mentioning that DA, which was
present at a high and constant level, did not interrupt the
oxidation signal of 5-HT. Furthermore, DA showed a clear
oxidation signal at 0.16 V with a decent current response.
However, the DA signal rapidly depleted and disappeared after
a few consecutive additions of 5-HT. This result showed that
both 5-HT and DA have competitive adsorption at the
electrodes surface when simultaneously tested.

Electrochemical Performance of the rGO−PEDOT/
PSS−nafion Strip. Separate Detection of 5-HT and DA. A
modified rGO−PEDOT/PSS electrode with the diluted nafion
(0.5%) strip film has been proven to be promising for highly
sensitive and selective adsorption of 5-HT or DA. The
obtained results of DPV are shown in Figure 3a,b for the
individual targeted oxidation of 5-HT and DA from 1 to 10
μM, respectively. DPV curves showed increased current
responses with increasing 5-HT concentration at 0.4 V in
Figure 3a using an rGO−PEDOT/PSS−nafion (0.5%) strip
sensor. The 5-HT signal was notable even at a low
concentration of 1 μM. In addition, a high DA oxidation
signal was observed at 0.16 V when the above strip sensor was
used as shown in Figure 3b. The oxidation signal of DA
gradually increased with an increase in its concentration.
Moreover, 1 μM 5-HT elucidated satisfactory current intensity
higher than that recorded for 1 μM DA. With continued
additions of 5-HT and DA, 5-HT showed a slightly lower
current response due to secondary products such as 5-HIAA
from the oxidation process of 5-HT.

Simultaneous Detection of 5-HT and DA. An rGO−
PEDOT/PSS−nafion (0.5%) strip film was used for
simultaneous detection of 5-HT and DA in a PBS solution.
The determination of 5-HT and DA was accomplished inside a
cabinet to minimize the effect of the environment on running
experiments. The solutions were daily and freshly prepared in
the laboratory using precise scales and an isolated hood for
nanoscale powders. The applied experimental protocol for
measuring 5-HT did not interrupt by the later addition of DA.
The electrochemical performance of an rGO−PEDOT/

PSS−nafion (0.5%) strip was decently evaluated toward
simultaneous detection of 5-HT and DA (at 10 μM of each
them) through a CV experiment. At 20 mV/s scan rate, 5-HT
and DA showed well-separated and sharp oxidation signals at
0.4 and 0.16 V (vs Ag/AgCl), respectively (Figure 2c).
Increasing the scan rate from 20 to 200 mV/s for the same
system as shown in Figure 3d, a symmetrical CV shape was
observed with a proportional and an identical redox couple of
5-HT and DA. Figure 3c,d shows the enhanced sensitivity
recorded by the rGO−PEDOT/PSS−nafion (0.5%) strip film
toward 5-HT in the presence of DA. As can be seen from
Figure 3c,d, the oxidation mechanism of 5-HT and DA is a
diffusion-controlled process.
The capability of an rGO−PEDOT/PSS−nafion (0.5%)

strip in detecting 5-HT and DA simultaneously has been
demonstrated using the DPV method. Figure 3e exhibits DPV
of 5-HT from 0.1 to 10 μM in a PBS solution containing DA
(5 μM). The oxidation signal of 5-HT was very stable at 0.4 V,
and no shifts were observed. The current response was well
defined and typically increased with the sequential additions of
5-HT without interruption of DA that already existed at a high
and constant level.24 Furthermore, DA showed a clear
oxidation signal at 0.16 V with a decent current response.
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However, the DA signal rapidly depleted and disappeared after
a few consecutive additions of 5-HT.33 Figure 3e shows that
both 5-HT and DA have competitive diffusion at the surface of
the film when simultaneously tested.
A constant level of 5-HT (5 μM) with a range of DA from

0.1 to 10 μM was also investigated using an rGO−PEDOT/
PSS−nafion (0.5%) strip film, as shown in Figure 3f. The first
injections of DA from 0.1 to 0.8 μM were not detectable.
However, the current response of greater DA concentrations
from 1 to 10 μM was recorded at 0.16 V (vs Ag/AgCl). After
each DA addition, a linearly increased signal appeared
corresponding to the DA oxidation process. The sharp and
clear signal noticed at 0.4 V could be attributed to oxidized 5-
HT. The current response of the 5-HT signal slightly
minimized concurrent with the continuous additions of DA
evaluated through DPV. 5-HT and DA showed interesting
competitive adsorption when simultaneously tested. It can also
be observed that the 5-HT signal was still well recognized in
Figure 3f unlike the DA signal, which faded in Figure 3e. These
results proved that the rGO−PEDOT/PSS−nafion (0.5%)
strip film has a high priority to 5-HT detection compared to
DA. In other words, the rGO−PEDOT/PSS−nafion (0.5%)
strip film revealed much more catalytic activity to 5-HT than
DA.
The rGO−PEDOT/PSS−nafion (0.5%) strip film showed

excellent sensitivity to 5-HT and electrocatalytic activity to
obtain stable and improved current responses compared to
DA. The developed strip sensor was able to enhance oxidation
signal separation between 5-HT and DA, even though they
have competitive adsorption. Besides, 5-HT and DA are
cations that can strongly be applied to nafion’s skeleton
(negatively charged polymer) and enhance the electron
mobility in turn.24 It has been suggested that introducing
nafion strengthens the analyte’s signal and reduces the effect of
electroactive interferences at the same time.32

Amperometric Detection of 5-HT and DA. Figure 4a
illustrates the amperometric test to investigate the effect of
dopamine interference on the 5-HT signal at 0.4 V by
increasing the 5-HT concentration from 0.1 to 10 μM under
moderate and constant stirring. The current signal of the
rGO−PEDOT/PSS−nafion (0.5%) electrode increased rapidly
after each addition of 5-HT and then reached a stable-state
current within 2 s, showing the fast oxidation behavior of 5-
HT. The amperometric current−time curve showed that the
pre-existing DA did not interfere with the oxidation of 5-HT.
This could be ascribed to the significant electrocatalytic activity
of the fabricated strip electrode and remarkable selectivity of
the nafion polymer to 5-HT oxidation at that potential.24 The
current of 5-HT oxidation signals was calibrated in Figure 4b,
revealing a linear relationship between 5-HT concentrations
and current responses as per indicated equations of the anodic
current Ipa = 0.9213 C5‑HT (R2 = 0.94) for low concentrations
and Ipa = 0.122 C5‑HT + 0.9 (R2 = 0.9466) for higher
concentrations of 5-HT.

■ CONCLUSIONS

In summary, we have demonstrated a novel strip sensor based
on nanostructured hybrid graphene and conducting polymer
films for separate and simultaneous detection of 5-HT with
dopamine. The as-developed rGO−PEDOT/PSS−nafion strip
sensor can be manufactured through simple drop-casting and is
capable of rapid electrochemical detection of 5-HT in the
presence of DA. The as-prepared strip sensor enabled
detection of lower concentrations of 5-HT than previously
reported for electrochemical sensors. Indicative anodic peaks
of 5-HT and DA were noticed at 0.34 and 1.6 V, respectively,
showing excellent selectivity to 5-HT. Moreover, a detection
limit of 5-HT as low as 0.1 μM was indicated. The as-prepared
strip sensor is reusable and demonstrated excellent sensitivity
and selectivity of 5-HT detection when presented with

Figure 4. (a) Amperometric test for 5-HT (0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, and 10 μM) in the presence of 5 μM dopamine and (b) calibration
curve of corresponding 5-HT concentrations vs current response.

Table 1. Composition of the As-Prepared rGO−PEDOT/PSS Films With and Without Nafion

RGO−PEDOT/PSS nafion

film
volume
(mL)

concentration
(mg/mL)

mass
(g)

mass per Area
(g/cm2) volume (mL)

volume of final dispersion drop-casted on
gold mylar substrate

dimensions of each
film (cm)

1 5 1.9 0.380 0.19 0 0.2 mL (out of 5 mL) casted on gold mylar W = 1
L = 2

2 4 1.52 0.304 0.152 1 mL of concentric
Nafion (5%)

0.2 mL (out of 5 mL) casted on gold mylar W = 1
L = 2

3 4 1.52 0.304 0.152 1 mL of diluted Nafion
(0.5%)

0.2 mL (out of 5 mL) casted on gold mylar W = 1
L = 2
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dopamine simultaneously. It can be concluded that the as-
prepared rGO−PEDOT/PSS−nafion strip sensor may be a
promising device in 5-HT detection with potential for use in
medical clinical application.

■ MATERIALS AND METHODS
Materials. Serotonin (5-HT, 5-hydroxytryptamine)

(C10H12N2O), dopamine hydrochloride (DA, C8H11NO2·

HCL), and ascorbic acid (AA, C6H8O6) were bought from
Sigma-Aldrich. 5-HT, DA, and AA solutions were instantly
prepared with phosphate-buffer saline (PBS) buffer before
every single electrochemical testing. The blank PBS solutions
were purged with nitrogen (N2) to obtain oxygen-free
electrolytes. Nafion (5%) was supplied by ion Power, Inc.
PEDOT/PSS pellets were obtained from Agfa, and graphite
flakes were purchased from Sigma-Aldrich.12

Fabrication and Modification of rGO−PEDOT/PSS
Strip Sensors. The procedure for the preparation of rGO−
PEDOT/PSS dispersion is based on a pre-reported method.31

The rGO−PEDOT/PSS dispersion (200 μL) was carefully
drop-casted onto a gold mylar substrate. Glass slides had
defined the dimensions of a single film (2 × 1 cm2). The mass
loading per area of rGO−PEDOT/PSS equals 0.19 mg/cm.
The films were left overnight on the bench to dry. Then, the
films were split into four strips using a specific sharp blade, and

each strip was used for the electrochemical sensing experi-
ments as an individual electrode.
To modify with nafion, the obtained rGO−PEDOT/PSS

dispersion was directly mixed with a nafion solution to find out
optimized conditions for sensor fabrication. Therefore, the
following composites were prepared: (i) the composite
containing 4000 μL of rGO−PEDOT/PSS dispersion and
1000 μL of concentric nafion (5%) and (ii) the composite
containing 4000 μL of rGO−PEDOT/PSS dispersion and
1000 μL of diluted nafion (0.5%). When the preparation step
was completed, each composite was sonicated for 20 min and
200 μL was withdrawn and drop-casted on two separated gold
mylar substrates to prepare rGO−PEDOT/PSS−nafion films,
which were split into strips as well. Fabrication methods of
rGO−PEDOT/PSS−nafion strips are illustrated in Figure 1.
Preparation of sensor components including the concen-

tration of each component, the mass of rGO−PEDOT/PSS,
the ratio of nafion in the composites, and films’ dimensions are
all described in Table 1. To prepare rGO−PEDOT/PSS−
nafion (0.5 wt %) composite films, the following amounts of
the composite were dropped onto gold mylar substrates: 100,
200, 300, and 400 μL. The thickness of each type of rGO−
PEDOT/PSS−nafion (0.5 wt %) film was measured using a
profilometer and shown in Table 2. As can be seen in Table 2,
the thickness of as-prepared films increased from 0.52 to 3.8
μm for 100 to 400 μL samples, respectively. The measured
thickness is corresponding to the dropped amounts of the
composite as the size of the substrate was constant. These
results indicated that the preparation method of the films was
precise and well controlled (figure 5).
The electrochemical performance of the four films was

investigated toward 5-HT with DA simultaneously. The
obtained voltammetric results indicated the contribution of
film thickness to strip performance when the testing conditions
are the same during all of the experiments such as the
concentration of targeted analytes, film size, and input
parameters. The obtained results suggested that as-prepared

Table 2. Thickness of the As-Prepared Sensor Films as a
Function of the Volume of rGO−PEDOT/PSS−Nafion (0.5
wt %) Solutions for Developed 2 cm2 Casting Films using a
Profilometer

film volume of the solutions (μL) @ 2 cm2 thickness (μm)

1 100 0.52
2 200 1.13
3 300 2.20
4 400 3.80

Figure 5. Schematic illustration of the strip’s fabrication process showing drop-casting of as-prepared composites on a gold mylar sheet along with
the steps followed to prepare a strip sensor of rGO−PEDOT/PSS−nafion.
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strip sensors with 200 μL of the rGO−PEDOT/PSS−nafion
(0.5 wt %) film showed higher sensitivity and selectivity for 5-
HT among other prepared sensors.
Characterization of the As-Prepared rGO−PEDOT/

PSS Strip. The morphology of (rGO−PEDOT/PSS with and
without nafion) strips was determined using field emission
SEM (FESEM), JEOL7500FA (JEOL Ltd., Tokyo, Japan).
Raman and FTIR spectroscopies were carried out using a Jobin
Yyvon Horbia 800 (Horiba Jobin Yvon, Edison, NJ) and the
Shimadzu AIM8000 FTIR Spectrometers (Shimadzu Corpo-
ration, Kyoto, Japan).22

Electrochemical Characterization of the rGO−
PEDOT/PSS Strip. Cyclic voltammetry (CV) and differential
pulse voltammetry (DPV) were essential voltammetric
techniques conducted using a CH Instruments electrochemical
workstation (CH Instruments, Inc., model 660D, made in the
U.S.A.). A three-electrode setup system was used where an
rGO−PEDOT/PSS film was used as a working electrode
(WE), Pt mesh was used as the counter electrode (CE), and
Ag/AgCl (in 3M NaCl) was used as the reference electrode.
Phosphate-buffer saline (PBS) (at pH = 7.4) was the basic
electrolyte in all experiments. The high and low potentials (E)
were set at +0.6 and −0.1 V, respectively, in CV testing with
applied scan rates ranging from 0.01 to 0.2 (V/s). For DPV
detection, the parameters were as follows: Incr. E = 0.004,
amplitude = 0.05, pulse width = 0.05, and pulse period = 0.2.
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